
Abstract class in Java

A class which is declared with the abstract keyword is known as an abstract class in Java. It can
have abstract and non-abstract methods (method with the body).

Before learning the Java abstract class, let's understand the abstraction in Java first.

Abstraction in Java

Abstraction is a process of hiding the implementation details and showing only functionality to
the user.

Another way, it shows only essential things to the user and hides the internal details, for example,
sending SMS where you type the text and send the message. You don't know the internal
processing about the message delivery.

Abstraction lets you focus on what the object does instead of how it does it.

Ways to achieve Abstraction

There are two ways to achieve abstraction in java

1. Abstract class (0 to 100%)

2. Interface (100%)

Abstract class in Java

A class which is declared as abstract is known as an abstract class. It can have abstract and non-
abstract methods. It needs to be extended and its method implemented. It cannot be instantiated.

Points to Remember

o An abstract class must be declared with an abstract keyword.

o It can have abstract and non-abstract methods.

o It cannot be instantiated.

o It can have constructors and static methods also.

o It can have final methods which will force the subclass not to change the body of the

method.

Example of abstract class

1. abstract class A{}

Abstract Method in Java

A method which is declared as abstract and does not have implementation is known as an abstract
method.

Example of abstract method

1. abstract void printStatus();//no method body and abstract

Example of Abstract class that has an abstract method

In this example, Bike is an abstract class that contains only one abstract method run. Its
implementation is provided by the Honda class.

1. abstract class Bike{

2. abstract void run();

3. }

4. class Honda4 extends Bike{

5. void run(){System.out.println("running safely");}

6. public static void main(String args[]){

7. Bike obj = new Honda4();

8. obj.run();

9. }

10. }

Test it Now
running safely

Understanding the real scenario of Abstract class

In this example, Shape is the abstract class, and its implementation is provided by the Rectangle
and Circle classes.

Mostly, we don't know about the implementation class (which is hidden to the end user), and an
object of the implementation class is provided by the factory method.

A factory method is a method that returns the instance of the class. We will learn about the
factory method later.

In this example, if you create the instance of Rectangle class, draw() method of Rectangle class
will be invoked.

File: TestAbstraction1.java

http://www.javatpoint.com/opr/test.jsp?filename=Honda4

1. abstract class Shape{

2. abstract void draw();

3. }

4. //In real scenario, implementation is provided by others i.e. unknown by end user

5. class Rectangle extends Shape{

6. void draw(){System.out.println("drawing rectangle");}

7. }

8. class Circle1 extends Shape{

9. void draw(){System.out.println("drawing circle");}

10. }

11. //In real scenario, method is called by programmer or user

12. class TestAbstraction1{

13. public static void main(String args[]){

14. Shape s=new Circle1();//In a real scenario, object is provided through method, e.g., getShape()

method

15. s.draw();

16. }

17. }

Another example of Abstract class in java

File: TestBank.java

1. abstract class Bank{

2. abstract int getRateOfInterest();

3. }

4. class SBI extends Bank{

5. int getRateOfInterest(){return 7;}

6. }

7. class PNB extends Bank{

8. int getRateOfInterest(){return 8;}

9. }

10.

11. class TestBank{

12. public static void main(String args[]){

13. Bank b;

14. b=new SBI();

15. System.out.println("Rate of Interest is: "+b.getRateOfInterest()+" %");

16. b=new PNB();

17. System.out.println("Rate of Interest is: "+b.getRateOfInterest()+" %");

18. }}
Test it Now

Rate of Interest is: 7 %

Rate of Interest is: 8 %

http://www.javatpoint.com/opr/test.jsp?filename=TestBank

Abstract class having constructor, data member and
methods

An abstract class can have a data member, abstract method, method body (non-abstract method),
constructor, and even main() method.

File: TestAbstraction2.java

1. //Example of an abstract class that has abstract and non-abstract methods

2. abstract class Bike{

3. Bike(){System.out.println("bike is created");}

4. abstract void run();

5. void changeGear(){System.out.println("gear changed");}

6. }

7. //Creating a Child class which inherits Abstract class

8. class Honda extends Bike{

9. void run(){System.out.println("running safely..");}

10. }

11. //Creating a Test class which calls abstract and non-abstract methods

12. class TestAbstraction2{

13. public static void main(String args[]){

14. Bike obj = new Honda();

15. obj.run();

16. obj.changeGear();

17. }

18. }
Test it Now

 bike is created

 running safely..

 gear changed

Rule: If there is an abstract method in a class, that class must be abstract.

1. class Bike12{

2. abstract void run();

3. }

Test it Now

compile time error

Rule: If you are extending an abstract class that has an abstract method, you must either provide the

implementation of the method or make this class abstract.

Another real scenario of abstract class

http://www.javatpoint.com/opr/test.jsp?filename=TestAbstraction2
http://www.javatpoint.com/opr/test.jsp?filename=Bike12

The abstract class can also be used to provide some implementation of the interface. In such case,
the end user may not be forced to override all the methods of the interface.

Note: If you are beginner to java, learn interface first and skip this example.

1. interface A{

2. void a();

3. void b();

4. void c();

5. void d();

6. }

7.

8. abstract class B implements A{

9. public void c(){System.out.println("I am c");}

10. }

11.

12. class M extends B{

13. public void a(){System.out.println("I am a");}

14. public void b(){System.out.println("I am b");}

15. public void d(){System.out.println("I am d");}

16. }

17.

18. class Test5{

19. public static void main(String args[]){

20. A a=new M();

21. a.a();

22. a.b();

23. a.c();

24. a.d();

25. }}
Test it Now

Output:I am a

 I am b

 I am c

 I am d

http://www.javatpoint.com/opr/test.jsp?filename=Test5

class CommandLineExample{
public static void main(String args[]){
System.out.println("Your first argument is: "+args[0]);
}
}

compile by > javac CommandLineExample.java
run by > java CommandLineExample sonoo

class A{

public static void main(String args[]){

for(int i=0;i<args.length;i++)

System.out.println(args[i]);

}

}

compile by > javac A.java

run by > java A sonoo jaiswal 1 3 abc

Output: sonoo

 jaiswal

 1

 3

 abc

import java.lang.*;
import java.io.*;
import java.util.*;
class palindrome
{
 public static void main(String args[])
 {
 boolean flag=true;
 String str;
 str=args[0];
 int len= str.length();
 System.out.println("Length: "+len);
 for(int i=0;i<(len/2);i++)
 {
 if(str.charAt(i)==str.charAt((len-1)-i)) ;
 else { flag=false; break;}
 }
 if(flag==true) System.out.println("Palindrome");
 else System.out.println("Not Palindrome");
 }
}

An interface in java is a blueprint of a class. It has static constants and abstract methods.

The interface in java is a mechanism to achieve abstraction. There can be only abstract

methods in the java interface not method body. It is used to achieve abstraction and
multiple inheritance in Java.

Java Interface also represents IS-A relationship.

It cannot be instantiated just like abstract class.

Why use Java interface?

There are mainly three reasons to use interface. They are given below.

o It is used to achieve abstraction.

o By interface, we can support the functionality of multiple inheritance.

o It can be used to achieve loose coupling.

Java 8 Interface Improvement

Since Java 8, interface can have default and static methods which is discussed later.

Internal addition by compiler

The java compiler adds public and abstract keywords before the interface method. More, it
adds public, static and final keywords before data members.

In other words, Interface fields are public, static and final by default, and methods are
public and abstract.

Understanding relationship between classes and
interfaces

As shown in the figure given below, a class extends another class, an interface extends
another interface but a class implements an interface.

Java Interface Example

In this example, Printable interface has only one method, its implementation is provided in
the A class.

interface printable{

void print();

}

class A6 implements printable{

public void print(){System.out.println("Hello");}

public static void main(String args[]){

A6 obj = new A6();

obj.print();

 }

}

Test it Now

Output:

Hello

Java Interface Example: Drawable

http://www.javatpoint.com/opr/test.jsp?filename=A6

In this example, Drawable interface has only one method. Its implementation is provided by

Rectangle and Circle classes. In real scenario, interface is defined by someone but

implementation is provided by different implementation providers. And, it is used by
someone else. The implementation part is hidden by the user which uses the interface.

File: TestInterface1.java

//Interface declaration: by first user

interface Drawable{

void draw();

}

//Implementation: by second user

class Rectangle implements Drawable{

public void draw(){System.out.println("drawing rectangle");}

}

class Circle implements Drawable{

public void draw(){System.out.println("drawing circle");}

}

//Using interface: by third user

class TestInterface1{

public static void main(String args[]){

Drawable d=new Circle();//In real scenario, object is provided by method e.g. getDrawable()

d.draw();

}}

Test it Now

Output:

drawing circle

Java Interface Example: Bank

Let's see another example of java interface which provides the implementation of Bank
interface.

File: TestInterface2.java

interface Bank{

float rateOfInterest();

}

class SBI implements Bank{

http://www.javatpoint.com/opr/test.jsp?filename=TestInterface1

public float rateOfInterest(){return 9.15f;}

}

class PNB implements Bank{

public float rateOfInterest(){return 9.7f;}

}

class TestInterface2{

public static void main(String[] args){

Bank b=new SBI();

System.out.println("ROI: "+b.rateOfInterest());

}}

Test it Now

Output:

ROI: 9.15

Multiple inheritance in Java by interface

If a class implements multiple interfaces, or an interface extends multiple interfaces i.e.
known as multiple inheritance.

interface Printable{

void print();

}

interface Showable{

void show();

http://www.javatpoint.com/opr/test.jsp?filename=TestInterface2

}

class A7 implements Printable,Showable{

public void print(){System.out.println("Hello");}

public void show(){System.out.println("Welcome");}

public static void main(String args[]){

A7 obj = new A7();

obj.print();

obj.show();

 }

}

Test it Now
Output:Hello

 Welcome

Q) Multiple inheritance is not supported through class in java but it
is possible by interface, why?

As we have explained in the inheritance chapter, multiple inheritance is not supported in

case of class because of ambiguity. But it is supported in case of interface because there is
no ambiguity as implementation is provided by the implementation class. For example:

interface Printable{

void print();

}

interface Showable{

void print();

}

class TestInterface3 implements Printable, Showable{

public void print(){System.out.println("Hello");}

public static void main(String args[]){

TestInterface3 obj = new TestInterface3();

obj.print();

 }

}

Test it Now

Output:

http://www.javatpoint.com/opr/test.jsp?filename=A7
http://www.javatpoint.com/opr/test.jsp?filename=TestInterface3

Hello

As you can see in the above example, Printable and Showable interface have same methods

but its implementation is provided by class TestTnterface1, so there is no ambiguity.

Interface inheritance

A class implements interface but one interface extends another interface .

interface Printable{

void print();

}

interface Showable extends Printable{

void show();

}

class TestInterface4 implements Showable{

public void print(){System.out.println("Hello");}

public void show(){System.out.println("Welcome");}

public static void main(String args[]){

TestInterface4 obj = new TestInterface4();

obj.print();

obj.show();

 }

}

Test it Now

Output:

Hello

Welcome

Java 8 Default Method in Interface

Since Java 8, we can have method body in interface. But we need to make it default
method. Let's see an example:

File: TestInterfaceDefault.java

http://www.javatpoint.com/opr/test.jsp?filename=TestInterface4

interface Drawable{

void draw();

default void msg(){System.out.println("default method");}

}

class Rectangle implements Drawable{

public void draw(){System.out.println("drawing rectangle");}

}

class TestInterfaceDefault{

public static void main(String args[]){

Drawable d=new Rectangle();

d.draw();

d.msg();

}}

Test it Now

Output:

drawing rectangle

default method

Java 8 Static Method in Interface

Since Java 8, we can have static method in interface. Let's see an example:

File: TestInterfaceStatic.java

interface Drawable{

void draw();

static int cube(int x){return x*x*x;}

}

class Rectangle implements Drawable{

public void draw(){System.out.println("drawing rectangle");}

}

class TestInterfaceStatic{

public static void main(String args[]){

Drawable d=new Rectangle();

d.draw();

System.out.println(Drawable.cube(3));

http://www.javatpoint.com/opr/test.jsp?filename=TestInterfaceDefault

}}

Test it Now

Output:

drawing rectangle

27

Q) What is marker or tagged interface?

An interface that have no member is known as marker or tagged interface. For example:

Serializable, Cloneable, Remote etc. They are used to provide some essential information to
the JVM so that JVM may perform some useful operation.

//How Serializable interface is written?

public interface Serializable{

}

Nested Interface in Java

Note: An interface can have another interface i.e. known as nested interface. We will learn it
in detail in the nested classes chapter. For example:

interface printable{

 void print();

 interface MessagePrintable{

 void msg();

 }

}

More about Nested Interface

Difference between abstract class and interface

Abstract class and interface both are used to achieve abstraction where we can declare the

abstract methods. Abstract class and interface both can't be instantiated.

But there are many differences between abstract class and interface that are given below.

http://www.javatpoint.com/opr/test.jsp?filename=TestInterfaceStatic
https://www.javatpoint.com/nested-interface

Abstract class Interface

1) Abstract class can have abstract and non-

abstract methods.

Interface can have only abstract methods. Since Java 8, it can

have default and static methods also.

2) Abstract class doesn't support multiple

inheritance.

Interface supports multiple inheritance.

3) Abstract class can have final, non-final, static

and non-static variables.

Interface has only static and final variables.

4) Abstract class can provide the

implementation of interface.

Interface can't provide the implementation of abstract

class.

5) The abstract keyword is used to declare

abstract class.

The interface keyword is used to declare interface.

6) Example:

public abstract class Shape{

public abstract void draw();

}

Example:

public interface Drawable{

void draw();

}

Simply, abstract class achieves partial abstraction (0 to 100%) whereas interface achieves

fully abstraction (100%).

Example of abstract class and interface in Java

Let's see a simple example where we are using interface and abstract class both.

1. //Creating interface that has 4 methods

2. interface A{

3. void a();//bydefault, public and abstract

4. void b();

5. void c();

6. void d();

7. }

8.

9. //Creating abstract class that provides the implementation of one method of A interface

10. abstract class B implements A{

11. public void c(){System.out.println("I am C");}

12. }

13.

14. //Creating subclass of abstract class, now we need to provide the implementation of rest of

the methods

15. class M extends B{

16. public void a(){System.out.println("I am a");}

17. public void b(){System.out.println("I am b");}

18. public void d(){System.out.println("I am d");}

19. }

20.

21. //Creating a test class that calls the methods of A interface

22. class Test5{

23. public static void main(String args[]){

24. A a=new M();

25. a.a();

26. a.b();

27. a.c();

28. a.d();

29. }}

Test it Now

Output:

 I am a

 I am b

 I am c

 I am d

A java package is a group of similar types of classes, interfaces and sub-packages.

Package in java can be categorized in two form, built-in package and user-defined package.

There are many built-in packages such as java, lang, awt, javax, swing, net, io, util, sql etc.

Here, we will have the detailed learning of creating and using user-defined packages.

Advantage of Java Package

http://www.javatpoint.com/opr/test.jsp?filename=Test5

1) Java package is used to categorize the classes and interfaces so that they can be easily
maintained.

2) Java package provides access protection.

3) Java package removes naming collision.

Simple example of java package

The package keyword is used to create a package in java.

1. //save as Simple.java

2. package mypack;

3. public class Simple{

4. public static void main(String args[]){

5. System.out.println("Welcome to package");

6. }

7. }

How to compile java package

If you are not using any IDE, you need to follow the syntax given below:

1. javac -d directory javafilename

For example

1. javac -d . Simple.java

The -d switch specifies the destination where to put the generated class file. You can use

any directory name like /home (in case of Linux), d:/abc (in case of windows) etc. If you
want to keep the package within the same directory, you can use . (dot).

How to run java package program

You need to use fully qualified name e.g. mypack.Simple etc to run the class.

To Compile: javac -d . Simple.java

To Run: java mypack.Simple

Output:Welcome to package

The -d is a switch that tells the compiler where to put the class file i.e. it represents

destination. The . represents the current folder.

How to access package from another package?

There are three ways to access the package from outside the package.

1. import package.*;

2. import package.classname;

3. fully qualified name.

1) Using packagename.*

If you use package.* then all the classes and interfaces of this package will be accessible
but not subpackages.

The import keyword is used to make the classes and interface of another package accessible
to the current package.

Example of package that import the packagename.*

//save by A.java

package pack;

public class A{

 public void msg(){System.out.println("Hello");}

}

//save by B.java

package mypack;

import pack.*;

class B{

 public static void main(String args[]){

 A obj = new A();

 obj.msg();

 }

}
Output:Hello

2) Using packagename.classname

If you import package.classname then only declared class of this package will be accessible.

Example of package by import package.classname

//save by A.java

package pack;

public class A{

 public void msg(){System.out.println("Hello");}

}

//save by B.java

package mypack;

import pack.A;

class B{

 public static void main(String args[]){

 A obj = new A();

 obj.msg();

 }

}
Output:Hello

3) Using fully qualified name

If you use fully qualified name then only declared class of this package will be accessible.

Now there is no need to import. But you need to use fully qualified name every time when

you are accessing the class or interface.

It is generally used when two packages have same class name e.g. java.util and java.sql
packages contain Date class.

Example of package by import fully qualified name

//save by A.java

package pack;

public class A{

 public void msg(){System.out.println("Hello");}

}

//save by B.java

package mypack;

class B{

 public static void main(String args[]){

 pack.A obj = new pack.A();//using fully qualified name

 obj.msg();

 }

}
Output:Hello

Note: If you import a package, subpackages will not be imported.

If you import a package, all the classes and interface of that package will be imported

excluding the classes and interfaces of the subpackages. Hence, you need to import the

subpackage as well.

Note: Sequence of the program must be package then import then class.

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Exception Handling in Java

The exception handling in java is one of the powerful mechanism to handle the runtime

errors so that normal flow of the application can be maintained.

In this page, we will learn about java exception, its type and the difference between
checked and unchecked exceptions.

What is exception

Dictionary Meaning: Exception is an abnormal condition.

In java, exception is an event that disrupts the normal flow of the program. It is an object
which is thrown at runtime.

What is exception handling

Exception Handling is a mechanism to handle runtime errors such as ClassNotFound, IO,

SQL, Remote etc.

Advantage of Exception Handling

The core advantage of exception handling is to maintain the normal flow of the

application. Exception normally disrupts the normal flow of the application that is why we
use exception handling. Let's take a scenario:

1. statement 1;

2. statement 2;

3. statement 3;

4. statement 4;

5. statement 5;//exception occurs

6. statement 6;

7. statement 7;

8. statement 8;

9. statement 9;

10. statement 10;

Suppose there is 10 statements in your program and there occurs an exception at

statement 5, rest of the code will not be executed i.e. statement 6 to 10 will not run. If we

perform exception handling, rest of the statement will be executed. That is why we use
exception handling in java.

Hierarchy of Java Exception classes

Types of Exception

There are mainly two types of exceptions: checked and unchecked where error is considered

as unchecked exception. The sun microsystem says there are three types of exceptions:

1. Checked Exception

2. Unchecked Exception

3. Error

Difference between checked and unchecked
exceptions

1) Checked Exception

The classes that extend Throwable class except RuntimeException and Error are known as

checked exceptions e.g.IOException, SQLException etc. Checked exceptions are checked at
compile-time.

2) Unchecked Exception

The classes that extend RuntimeException are known as unchecked exceptions e.g.

ArithmeticException, NullPointerException, ArrayIndexOutOfBoundsException etc.
Unchecked exceptions are not checked at compile-time rather they are checked at runtime.

3) Error

Error is irrecoverable e.g. OutOfMemoryError, VirtualMachineError, AssertionError etc.

Common scenarios where exceptions may occur

There are given some scenarios where unchecked exceptions can occur. They are as

follows:

1) Scenario where ArithmeticException occurs

If we divide any number by zero, there occurs an ArithmeticException.

1. int a=50/0;//ArithmeticException

2) Scenario where NullPointerException occurs

If we have null value in any variable, performing any operation by the variable occurs an

NullPointerException.

1. String s=null;

2. System.out.println(s.length());//NullPointerException

3) Scenario where NumberFormatException occurs

The wrong formatting of any value, may occur NumberFormatException. Suppose I have a

string variable that have characters, converting this variable into digit will occur
NumberFormatException.

1. String s="abc";

2. int i=Integer.parseInt(s);//NumberFormatException

4) Scenario where ArrayIndexOutOfBoundsException occurs

If you are inserting any value in the wrong index, it would result

ArrayIndexOutOfBoundsException as shown below:

1. int a[]=new int[5];

2. a[10]=50; //ArrayIndexOutOfBoundsException

Java Exception Handling Keywords

There are 5 keywords used in java exception handling.

1. try

2. catch

3. finally

4. throw

5. throws

Java try-catch

Java try block

Java try block is used to enclose the code that might throw an exception. It must be used

within the method.

Java try block must be followed by either catch or finally block.

Syntax of java try-catch

1. try{

2. //code that may throw exception

3. }catch(Exception_class_Name ref){}

Syntax of try-finally block

1. try{

2. //code that may throw exception

3. }finally{}

Java catch block

Java catch block is used to handle the Exception. It must be used after the try block only.

You can use multiple catch block with a single try.

Problem without exception handling

Let's try to understand the problem if we don't use try-catch block.

1. public class Testtrycatch1{

2. public static void main(String args[]){

3. int data=50/0;//may throw exception

4. System.out.println("rest of the code...");

5. }

6. }

Test it Now

Output:

Exception in thread main java.lang.ArithmeticException:/ by zero

http://www.javatpoint.com/opr/test.jsp?filename=Testtrycatch1

As displayed in the above example, rest of the code is not executed (in such case, rest of

the code... statement is not printed).

There can be 100 lines of code after exception. So all the code after exception will not be
executed.

Solution by exception handling

Let's see the solution of above problem by java try-catch block.

1. public class Testtrycatch2{

2. public static void main(String args[]){

3. try{

4. int data=50/0;

5. }catch(ArithmeticException e){System.out.println(e);}

6. System.out.println("rest of the code...");

7. }

8. }

Test it Now

Output:

Exception in thread main java.lang.ArithmeticException:/ by zero

rest of the code...

Now, as displayed in the above example, rest of the code is executed i.e. rest of the code...

statement is printed.

http://www.javatpoint.com/opr/test.jsp?filename=Testtrycatch2

Internal working of java try-catch block

The JVM firstly checks whether the exception is handled or not. If exception is not handled,
JVM provides a default exception handler that performs the following tasks:

o Prints out exception description.

o Prints the stack trace (Hierarchy of methods where the exception occurred).

o Causes the program to terminate.

But if exception is handled by the application programmer, normal flow of the application is
maintained i.e. rest of the code is executed.

Java catch multiple exceptions

Java Multi catch block

If you have to perform different tasks at the occurrence of different Exceptions, use java

multi catch block.

Let's see a simple example of java multi-catch block.

1. public class TestMultipleCatchBlock{

2. public static void main(String args[]){

3. try{

4. int a[]=new int[5];

5. a[5]=30/0;

6. }

7. catch(ArithmeticException e){System.out.println("task1 is completed");}

8. catch(ArrayIndexOutOfBoundsException e){System.out.println("task 2 completed");}

9. catch(Exception e){System.out.println("common task completed");}

10.

11. System.out.println("rest of the code...");

12. }

13. }

Test it Now

Output:task1 completed

 rest of the code...

Rule: At a time only one Exception is occured and at a time only one catch block is executed.

Rule: All catch blocks must be ordered from most specific to most general i.e. catch for

ArithmeticException must come before catch for Exception .

1. class TestMultipleCatchBlock1{

2. public static void main(String args[]){

3. try{

4. int a[]=new int[5];

5. a[5]=30/0;

6. }

7. catch(Exception e){System.out.println("common task completed");}

8. catch(ArithmeticException e){System.out.println("task1 is completed");}

9. catch(ArrayIndexOutOfBoundsException e){System.out.println("task 2 completed");}

10. System.out.println("rest of the code...");

http://www.javatpoint.com/opr/test.jsp?filename=TestMultipleCatchBlock

11. }

12. }

Test it Now

Output:

Compile-time error

Java Nested try block

The try block within a try block is known as nested try block in java.

Why use nested try block

Sometimes a situation may arise where a part of a block may cause one error and the entire

block itself may cause another error. In such cases, exception handlers have to be nested.

Syntax:

1.

2. try

3. {

4. statement 1;

5. statement 2;

6. try

7. {

8. statement 1;

9. statement 2;

10. }

11. catch(Exception e)

12. {

13. }

14. }

15. catch(Exception e)

16. {

17. }

18.

Java nested try example

Let's see a simple example of java nested try block.

http://www.javatpoint.com/opr/test.jsp?filename=TestMultipleCatchBlock1

1. class Excep6{

2. public static void main(String args[]){

3. try{

4. try{

5. System.out.println("going to divide");

6. int b =39/0;

7. }catch(ArithmeticException e){System.out.println(e);}

8.

9. try{

10. int a[]=new int[5];

11. a[5]=4;

12. }catch(ArrayIndexOutOfBoundsException e){System.out.println(e);}

13.

14. System.out.println("other statement);

15. }catch(Exception e){System.out.println("handeled");}

16.

17. System.out.println("normal flow..");

18. }

19. }

Java is an object-oriented programming language. It allows you to divide complex problems into

smaller sets by creating objects.

These objects share two characteristics:

 state

 behavior

Let's take few examples:

1. Lamp is an object

o It can be in on or off state.

o You can turn on and turn off lamp (behavior).

2. Bicycle is an object

o It has current gear, two wheels, number of gear etc. states.

o It has braking, accelerating, changing gears etc. behavior.

You will learn about 3 main features of an object-oriented programming: data

encapsulation, inheritance and polymorphism in later chapters. This article will focus on class

and objects to keep things simple.

Recommended reading: What is an object?

Java Class
Before you create objects in Java, you need to define a class.

A class is a blueprint for the object.

We can think of class as a sketch (prototype) of a house. It contains all the details about the

floors, doors, windows etc. Based on these descriptions we build the house. House is the object.

Since, many houses can be made from the same description, we can create many objects from a

class.

How to define a class in Java?
Here's how a class is defined in Java:

class ClassName {
 // variables
 // methods
}

Here's an example:

class Lamp {

 // instance variable
 private boolean isOn;

 // method
 public void turnOn() {
 isOn = true;
 }

 // method
 public void turnOff() {

https://docs.oracle.com/javase/tutorial/java/concepts/object.html

 isOn = false;
 }
}

Here, we defined a class named Lamp.

The class has one instance variable (variable defined inside class) isOn and two

methods turnOn() and turnOff(). These variables and methods defined within a class are

called members of the class.

Notice two keywords, private and public in the above program. These are access modifiers

which will be discussed in detail in later chapters. For now, just remember:

 The private keyword makes instance variables and methods private which can be

accessed only from inside the same class.

 The public keyword makes instance variables and methods public which can be accessed

from outside of the class.

In the above program, isOn variable is private whereas turnOn() and turnOff() methods are

public.

If you try to access private members from outside of the class, compiler throws error.

Java Objects
When class is defined, only the specification for the object is defined; no memory or storage is

allocated.

To access members defined within the class, you need to create objects. Let's create objects

of Lamp class.

class Lamp {
 boolean isOn;

 void turnOn() {
 isOn = true;
 }

 void turnOff() {
 isOn = false;
 }
}

class ClassObjectsExample {
public static void main(String[] args) {
 Lamp l1 = new Lamp(); // create l1 object of Lamp class
 Lamp l2 = new Lamp(); // create l2 object of Lamp class
 }
}

This program creates two objects l1 and l2 of class Lamp.

How to access members?
You can access members (call methods and access instance variables) by using . operator. For

example,

l1.turnOn();

This statement calls turnOn() method inside Lamp class for l1 object.

We have mentioned word method quite a few times. You will learn about Java methods in detail

in the next chapter. Here's what you need to know for now:

When you call the method using the above statement, all statements within the body

of turnOn() method are executed. Then, the control of program jumps back to the statement

following li.turnOn();

Similarly, the instance variable can be accessed as:

l2.isOn = false;

It is important to note that, the private members can be accessed only from inside the class. If

the code l2.isOn = false; lies within the main() method (outside of the Lampclass), compiler

will show error.

Example: Java Class and Objects
class Lamp {
 boolean isOn;

 void turnOn() {
 isOn = true;
 }

 void turnOff() {
 isOn = false;
 }

 void displayLightStatus() {

 System.out.println("Light on? " + isOn);
 }
}

class ClassObjectsExample {
public static void main(String[] args) {

 Lamp l1 = new Lamp(), l2 = new Lamp();

 l1.turnOn();
 l2.turnOff();

 l1.displayLightStatus();
 l2.displayLightStatus();
 }
}

When you run the program, the output will be:

Light on? true
Light on? false

In the above program,

 Lamp class is created.

 The class has an instance variable isOn and three

methods turnOn(), turnOff() and displayLightStatus().

 Two objects l1 and l2 of Lamp class are created in the main() function.

 Here, turnOn() method is called using l1 object: l1.turnOn();

 This method sets isOn instance variable of l1 object to true.

 And, turnOff() method is called using l2 object: l1.turnOff();

 This method sets isOff instance variable of l2 object to false.

 Finally, l1.displayLightStatus(); statement displays Light on?

true because isOnvariable holds true for l1 object.

 And, l2.displayLightStatus(); statement displays Light

on? false because isOnvariable holds false for l2 object

Note, variables defined within a class are called instance variable for a reason.

When an object is initialized, it's called an instance. Each instance contains its own copy of these

variables. For example, isOn variable for objects l1 and l2 are different.

What is a method?

In mathematics, you might have studied about functions. For example, f(x) = x2 is a function

that returns squared value of x.

If x = 2, then f(2) = 4

If x = 3, f(3) = 9

and so on.

Similarly, in programming, a function is a block of code that performs a specific task.

In object-oriented programming, method is a jargon used for function. Methods are bound to a

class and they define the behavior of a class.

Recommended Reading: Java Class and Objects

Types of Java methods

Depending on whether a method is defined by the user, or available in standard library, there are

two types of methods:

 Standard Library Methods

 User-defined Methods

https://www.programiz.com/java-programming/class-objects

Standard Library Methods

The standard library methods are built-in methods in Java that are readily available for use.

These standard libraries come along with the Java Class Library (JCL) in a Java archive (*.jar)

file with JVM and JRE.

For example,

 print() is a method of java.io.PrintSteam. The print("...") prints the string inside

quotation marks.

 sqrt() is a method of Math class. It returns square root of a number.

Here's an working example:

public class Numbers {

 public static void main(String... args) {

 System.out.print("Square root of 4 is: " + Math.sqrt(4));

 }

}

When you run the program, the output will be:

Square root of 4 is: 2.0

User-defined Method

You can also define methods inside a class as per your wish. Such methods are called user-

defined methods.

How to create a user-defined method?

Before you can use (call a method), you need to define it.

Here is how you define methods in Java.

public static void myMethod() {

 System.out.println(“My Function called”);

}

Here, a method named myMethod() is defined.

You can see three keywords public, static and void before the function name.

 The public keyword makes myMethod() method public. Public members can be accessed

from outside of the class. To learn more, visit: Java public and private Modifiers.

 The static keyword denotes that the method can be accessed without creating the object of the

class. To learn more, visit: Static Keyword in Java

 The void keyword signifies that the method doesn’t return any value. You will learn about

returning value from the method later in this article.

In the above program, our method doesn’t accept any arguments. Hence the empty parenthesis ().

You will learn about passing arguments to a method later in this article.

The complete syntax for defining a Java method is:

modifier returnType static nameOfMethod (Parameter List) {

 // method body

}

Here,

 modifier - defines access type whether the method is public, private and so on.

 returnType - A method can return a value.

It can return native data types (int, float, double etc.), native objects (String, Map, List etc.), or

any other built-in and user defined objects.

If the method does not return a value, its return type is void.

https://www.programiz.com/java-programming/class-objects#private-public

 static - If you use static keyword in a method then it becomes a static method. Static methods

can be called without creating an instance of a class.

For example, the sqrt() method of standard Math class is static. Hence, we can directly

call Math.sqrt() without creating an instance of Math class.

 nameOfMethod - The name of the method is an identifier.

You can give any name to a method. However, it is more conventional to name it after the tasks it

performs. For example, calculateInterest, calculateArea, and so on.

 Parameters (arguments) - Parameters are the values passed to a method. You can pass any

number of arguments to a method.

 Method body - It defines what the method actually does, how the parameters are manipulated

with programming statements and what values are returned. The codes inside curly braces { } is

the body of the method.

How to call a Java Method?

Now you defined a method, you need to use it. For that, you have to call the method. Here's how:

myMethod();

This statement calls the myMethod() method that was declared earlier.

https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html
https://www.programiz.com/java-programming/keywords-identifiers#identifiers

1. While Java is executing the program code, it encounters myMethod(); in the code.

2. The execution then branches to the myFunction() method, and executes code inside the body of

the method.

3. After the codes execution inside the method body is completed, the program returns to the

original state and executes the next statement.

Example: Complete Program of Java Method

Let's see a Java method in action by defining a Java class.

class Main {

 public static void main(String[] args) {

 System.out.println("About to encounter a method.");

 // method call

 myMethod();

 System.out.println("Method was executed successfully!");

 }

 // method definition

 private static void myMethod(){

 System.out.println("Printing from inside myMethod()!");

 }

}

When you run the program, the output will be:

About to encounter a method.

Printing from inside myMethod().

Method was executed successfully!

The method myMethod() in the above program doesn't accept any arguments. Also, the method

doesn't return any value (return type is void).

Note that, we called the method without creating object of the class. It was possible

because myMethod() is static.

Here's another example. In this example, our method is non-static and is inside another class.

class Main {

 public static void main(String[] args) {

 Output obj = new Output();

 System.out.println("About to encounter a method.");

 // calling myMethod() of Output class

 obj.myMethod();

 System.out.println("Method was executed successfully!");

 }

}

class Output {

 // public: this method can be called from outside the class

 public void myMethod() {

 System.out.println("Printing from inside myMethod().");

 }

}

When you run the program, the output will be:

About to encounter a method.

Printing from inside myMethod().

Method was executed successfully!

Note that, we first created instance of Output class, then the method was called using objobject.

This is because myMethod() is a non-static method.

Java Methods with Arguments and Return Value

A Java method can have zero or more parameters. And, they may return a value.

Example: Return Value from Method

Let's take an example of method returning a value.

class SquareMain {

 public static void main(String[] args) {

 int result;

 result = square();

 System.out.println("Squared value of 10 is: " + result);

 }

 public static int square() {

 // return statement

 return 10 * 10;

 }

}

When you run the program, the output will be:

Squared value of 10 is: 100

In the above code snippet, the method square() does not accept any arguments and always

returns the value of 10 squared.

Notice, the return type of square() method is int. Meaning, the method returns an integer value.

As you can see, the scope of this method is limited as it always returns the same value.

Now, let's modify the above code snippet so that instead of always returning the squared value of

10, it returns the squared value of any integer passed to the method.

Example: Method Accepting Arguments and Returning

Value

public class SquareMain {

 public static void main(String[] args) {

 int result, n;

 n = 3

 result = square(n);

 System.out.println("Square of 3 is: " + result);

 n = 4

 result = square(n);

 System.out.println("Square of 4 is: " + result);

 }

 static int square(int i) {

 return i * i;

 }

}

When you run the program, the output will be:

Squared value of 3 is: 9

Squared value of 4 is: 16

Now, the square() method returns the squared value of whatever integer value passed to it.

Java is a strongly-typed language. If you pass any other data type except int (in the above

example), compiler will throw an error.

The argument passed n to the getSquare() method during the method call is called actual

argument.

result = getSquare(n);

The parameter i accepts the passed arguments in the method definition getSquare(int i). This

is called formal argument (parameter). The type of the formal argument must be explicitly typed.

You can pass more than one argument to the Java method by using commas. For example,

public class ArithematicMain {

 public static int getIntegerSum (int i, int j) {

 return i + j;

 }

 public static int multiplyInteger (int x, int y) {

 return x * y;

 }

 public static void main(String[] args) {

 System.out.println("10 + 20 = " + getIntegerSum(10, 20));

 System.out.println("20 x 40 = " + multiplyInteger(20, 40));

 }

}

When you run the program, the output will be:

10 + 20 = 30

20 x 40 = 800

The data type of actual and formal arguments should match, i.e., the data type of first actual

argument should match the type of first formal argument. Similarly, the type of second actual

argument must match the type of second formal argument and so on.

Example: Get Squared Value Of Numbers from 1 to 5

public class JMethods {

 // method defined

 private static int getSquare(int x){

 return x * x;

 }

 public static void main(String... args) {

 for (int i = 1; i <= 5; i++) {

 // method call

 result = getSquare(i)

 System.out.println("Square of " + i + " is : " + result); }

 }

}

When you run the program, the output will be:

Square of 1 is : 1

Square of 2 is : 4

Square of 3 is : 9

Square of 4 is : 16

Square of 5 is : 25

In above code snippet, the method getSquare() takes int as a parameter. Based on the argument

passed, the method returns the squared value of it.

Here, argument i of type int is passed to the getSquare() method during method call.

result = getSquare(i);

The parameter x accepts the passed argument [in the function definition getSquare(int x)].

return i * i; is the return statement. The code returns a value to the calling method and

terminates the function.

Did you notice, we reused the getSquare method 5 times?

What are the advantages of using methods?

 The main advantage is code reusability. You can write a method once, and use it multiple times.

You do not have to rewrite the entire code each time. Think of it as, "write once, reuse multiple

times."

 Methods make code more readable and easier to debug. For

example, getSalaryInformation() method is so readable, that we can know what this method

will be doing than actually reading the lines of code that make this method.

In Java, two or more methods can have same name if they differ in parameters (different number

of parameters, different types of parameters, or both). These methods are called overloaded

methods and this feature is called method overloading. For example:

void func() { ... }

void func(int a) { ... }

float func(double a) { ... }

float func(int a, float b) { ... }

Here, func() method is overloaded. These methods have same name but accept different

arguments.

Notice that, the return type of these methods are not same. Overloaded methods may or may not

have different return type, but they must differ in parameters they accept.

Why method overloading?

Suppose, you have to perform addition of the given numbers but there can be any number of

arguments (let’s say either 2 or 3 arguments for simplicity).

In order to accomplish the task, you can create two methods sum2num(int,

int) and sum3num(int, int, int) for two and three parameters respectively. However, other

programmers as well as you in future may get confused as the behavior of both methods is same

but they differ by name.

https://www.programiz.com/java-programming/methods

The better way to accomplish this task is by overloading methods. And, depending upon the

argument passed, one of the overloaded methods is called. This helps to increase readability of

the program.

How to perform method overloading in Java?

Here are different ways to perform method overloading:

1. Overloading by changing number of arguments

class MethodOverloading {

 private static void display(int a){

 System.out.println("Arguments: " + a);

 }

 private static void display(int a, int b){

 System.out.println("Arguments: " + a + " and " + b);

 }

 public static void main(String[] args) {

 display(1);

 display(1, 4);

 }

}

When you run the program, the output will be:

Arguments: 1

Arguments: 1 and 4

2. By changing the datatype of parameters

class MethodOverloading {

 // this method accepts int

 private static void display(int a){

 System.out.println("Got Integer data.");

 }

 // this method accepts String object

 private static void display(String a){

 System.out.println("Got String object.");

 }

 public static void main(String[] args) {

 display(1);

 display("Hello");

 }

}

When you run the program, the output will be:

Got Integer data.

Got String object.

Here, both overloaded methods accept one argument. However, one accepts argument of

type int whereas other accepts String object.

Let’s look at a real world example:

class HelperService {

 private String formatNumber(int value) {

 return String.format("%d", value);

 }

 private String formatNumber(double value) {

 return String.format("%.3f", value);

 }

 private String formatNumber(String value) {

 return String.format("%.2f", Double.parseDouble(value));

 }

 public static void main(String[] args) {

 HelperService hs = new HelperService();

 System.out.println(hs.formatNumber(500));

 System.out.println(hs.formatNumber(89.9934));

 System.out.println(hs.formatNumber("550"));

 }

}

When you run the program, the output will be:

500

89.993

550.00

In Java, you can also overload constructors in a similar way like methods.

Recommended Reading: Java Constructor Overloading

Important Points

 Two or more methods can have same name inside the same class if they accept different

arguments. This feature is known as method overloading.

 Method overloading is achieved by either:

o changing the number of arguments.

o or changing the datatype of arguments.

 Method overloading is not possible by changing the return type of methods.

What is a Constructor?

A constructor is similar to a method (but not actually a method) that is invoked automatically

when an object is instantiated.

Java compiler distinguish between a method and a constructor by its name and return type. In

Java, a constructor has same name as that of the class, and doesn’t return any value.

class Test {

 Test() {

 // constructor body

 }

}

Here, Test() is a constructor; it has same name as that of the class and doesn’t have a return

type.

https://www.programiz.com/java-programming/constructors#overloading
https://www.programiz.com/java-programming/methods

class Test {

 void Test() {

 // method body

 }

}

Here, Test() has same name as that of the class. However, it has a return type void. Hence, it’s

a method not a constructor.

Recommended Reading: Why do constructors not return values?

Example: Java Constructor

class ConsMain {

 private int x;

 // constructor

 private ConsMain(){

 System.out.println("Constructor Called");

 x = 5;

 }

 public static void main(String[] args){

 ConsMain obj = new ConsMain();

 System.out.println("Value of x = " + obj.x);

 }

https://stackoverflow.com/questions/1788312/why-do-constructors-not-return-values

}

When you run the program, the output will be:

Constructor Called

Value of x = 5

Here, ConsMain() constructor is called when obj object is instantiated.

A constructor may or may not accept arguments.

No-Arg Constructor

If a Java constructor does not accept any parameters, it is a no-arg constructor. It's syntax is:

accessModifier ClassName() {

 // constructor body

}

Example of no-arg constructor

class NoArgCtor {

 int i;

 // constructor with no parameter

 private NoArgCtor(){

 i = 5;

 System.out.println("Object created and i = " + i);

 }

 public static void main(String[] args) {

 NoArgCtor obj = new NoArgCtor();

 }

}

When you run the program, the output will be:

Object created and i = 5

Here, NoArgCtor() constructor doesn’t accept any parameters.

Did you notice that the access modifier of NoArgCtor() constructor is private?

This is because the object is instantiated from within the same class. Hence, it can access the

constructor.

However, if the object was created outside of the class, you have to declare the

constructor public to access it. For example:

class Company {

 String domainName;

 // object is created in another class

 public Company(){

 domainName = "programiz.com";

 }

}

public class CompanyImplementation {

 public static void main(String[] args) {

 Company companyObj = new Company();

 System.out.println("Domain name = "+ companyObj.domainName);

 }

}

When you run the program, the output will be:

Domain name = programiz.com

Default Constructor

If you do not create constructors yourself, the Java compiler will automatically create a no-

argument constructor during run-time. This constructor is known as default constructor. The

default constructor initializes any uninitialized instance variables.

Type Default Value

boolean false

byte 0

short 0

int 0

long 0L

char \u0000

float 0.0f

double 0.0d

object Reference null

Example: Default Constructor

class DefaultConstructor {

 int a;

 boolean b;

 public static void main(String[] args) {

 DefaultConstructor obj = new DefaultConstructor();

 System.out.println("a = " + obj.a);

 System.out.println("b = " + obj.b);

 }

}

The above program is equivalent to:

class DefaultConstructor {

 int a;

 boolean b;

 private DefaultConstructor() {

 a = 0;

 b = false;

 }

 public static void main(String[] args) {

 DefaultConstructor obj = new DefaultConstructor();

 System.out.println("a = " + obj.a);

 System.out.println("b = " + obj.b);

 }

}

Recommended Reading: Java Visibility Modifiers

Parameterized Constructor

A constructor may also accept parameters. It's syntax is:

accessModifier ClassName(arg1, arg2, ..., argn) {

 // constructor body

}

Example: Parameterized constructor

class Vehicle {

 int wheels;

 private Vehicle(int wheels){

 wheels = wheels;

 System.out.println(wheels + " wheeler vehicle created.");

 }

 public static void main(String[] args) {

 Vehicle v1 = new Vehicle(2);

 Vehicle v2 = new Vehicle(3);

 Vehicle v3 = new Vehicle(4);

 }

}

When you run the program, the output will be:

2 wheeler vehicle created.

3 wheeler vehicle created.

4 wheeler vehicle created.

Here, we have passed an argument of type int (number of wheels) to the constructor during

object instantiation.

Constructors Overloading in Java

Similar like method overloading, you can also overload constructors if two or more constructors

are different in parameters. For example:

class Company {

 String domainName;

 public Company(){

 this.domainName = "default";

 }

 public Company(String domainName){

 this.domainName = domainName;

 }

https://www.programiz.com/java-programming/method-overloading

 public void getName(){

 System.out.println(this.domainName);

 }

 public static void main(String[] args) {

 Company defaultObj = new Company();

 Company programizObj = new Company("programiz.com");

 defaultObj.getName();

 programizObj.getName();

 }

}

When you run the program, the output will be:

default

programiz.com

Recommended Reading: this keyword in Java

 Constructors are invoked implicitly when you instantiate objects.

 The two rules for creating a constructor are:

o A Java constructor name must exactly match with the class name (including case).

o A Java constructor must not have a return type.

 If a class doesn't have a constructor, Java compiler automatically creates a default

constructor during run-time. The default constructor initialize instance variables with

default values. For example: int variable will be initialized to 0

 Constructor types:

o No-Arg Constructor - a constructor that does not accept any arguments

o Default Constructor - a constructor that is automatically created by the Java

compiler if it is not explicitly defined.

o Parameterized constructor - used to specify specific values of variables in object

 Constructors cannot be abstract or static or final.

 Constructor can be overloaded but can not be overridden.

https://www.programiz.com/java-programming/this-keyword

Java static keyword

The static keyword in java is used for memory management mainly. We can apply java

static keyword with variables, methods, blocks and nested class. The static keyword belongs
to the class than instance of the class.

The static can be:

1. variable (also known as class variable)

2. method (also known as class method)

3. block

4. nested class

1) Java static variable

If you declare any variable as static, it is known static variable.

o The static variable can be used to refer the common property of all objects (that is

not unique for each object) e.g. company name of employees,college name of

students etc.

o The static variable gets memory only once in class area at the time of class loading.

Advantage of static variable

It makes your program memory efficient (i.e it saves memory).

Understanding problem without static variable

1. class Student{

2. int rollno;

3. String name;

4. String college="ITS";

5. }

Suppose there are 500 students in my college, now all instance data members will get

memory each time when object is created.All student have its unique rollno and name so

instance data member is good.Here, college refers to the common property of all objects.If
we make it static,this field will get memory only once.

Java static property is shared to all objects.

Example of static variable

1. //Program of static variable

2.

3. class Student8{

4. int rollno;

5. String name;

6. static String college ="ITS";

7.

8. Student8(int r,String n){

9. rollno = r;

10. name = n;

11. }

12. void display (){System.out.println(rollno+" "+name+" "+college);}

13.

14. public static void main(String args[]){

15. Student8 s1 = new Student8(111,"Karan");

16. Student8 s2 = new Student8(222,"Aryan");

17.

18. s1.display();

19. s2.display();

20. }

21. }

Test it Now
Output:111 Karan ITS

 222 Aryan ITS

http://www.javatpoint.com/opr/test.jsp?filename=Student8

Program of counter without static variable

In this example, we have created an instance variable named count which is incremented in

the constructor. Since instance variable gets the memory at the time of object creation,

each object will have the copy of the instance variable, if it is incremented, it won't reflect
to other objects. So each objects will have the value 1 in the count variable.

1. class Counter{

2. int count=0;//will get memory when instance is created

3.

4. Counter(){

5. count++;

6. System.out.println(count);

7. }

8.

9. public static void main(String args[]){

10.

11. Counter c1=new Counter();

12. Counter c2=new Counter();

13. Counter c3=new Counter();

14.

15. }

16. }

Test it Now
Output:1

 1

 1

Program of counter by static variable

As we have mentioned above, static variable will get the memory only once, if any object

changes the value of the static variable, it will retain its value.

1. class Counter2{

2. static int count=0;//will get memory only once and retain its value

3.

4. Counter2(){

5. count++;

6. System.out.println(count);

7. }

8.

9. public static void main(String args[]){

10.

11. Counter2 c1=new Counter2();

12. Counter2 c2=new Counter2();

13. Counter2 c3=new Counter2();

14.

15. }

16. }

Test it Now
Output:1

 2

 3

2) Java static method

If you apply static keyword with any method, it is known as static method.

http://www.javatpoint.com/opr/test.jsp?filename=Counter
http://www.javatpoint.com/opr/test.jsp?filename=Counter2

o A static method belongs to the class rather than object of a class.

o A static method can be invoked without the need for creating an instance of a class.

o static method can access static data member and can change the value of it.

Example of static method

1. //Program of changing the common property of all objects(static field).

2.

3. class Student9{

4. int rollno;

5. String name;

6. static String college = "ITS";

7.

8. static void change(){

9. college = "BBDIT";

10. }

11.

12. Student9(int r, String n){

13. rollno = r;

14. name = n;

15. }

16.

17. void display (){System.out.println(rollno+" "+name+" "+college);}

18.

19. public static void main(String args[]){

20. Student9.change();

21.

22. Student9 s1 = new Student9 (111,"Karan");

23. Student9 s2 = new Student9 (222,"Aryan");

24. Student9 s3 = new Student9 (333,"Sonoo");

25.

26. s1.display();

27. s2.display();

28. s3.display();

29. }

30. }

Test it Now

http://www.javatpoint.com/opr/test.jsp?filename=Student9

Output:111 Karan BBDIT

 222 Aryan BBDIT

 333 Sonoo BBDIT

Another example of static method that performs normal
calculation

1. //Program to get cube of a given number by static method

2.

3. class Calculate{

4. static int cube(int x){

5. return x*x*x;

6. }

7.

8. public static void main(String args[]){

9. int result=Calculate.cube(5);

10. System.out.println(result);

11. }

12. }

Test it Now
Output:125

Restrictions for static method

There are two main restrictions for the static method. They are:

1. The static method can not use non static data member or call non-static method

directly.

2. this and super cannot be used in static context.

1. class A{

2. int a=40;//non static

3.

4. public static void main(String args[]){

5. System.out.println(a);

6. }

7. }

Test it Now
Output:Compile Time Error

http://www.javatpoint.com/opr/test.jsp?filename=Calculate
http://www.javatpoint.com/opr/test.jsp?filename=A

Q) why java main method is static?

Ans) because object is not required to call static method if it were non-static method,

jvm create object first then call main() method that will lead the problem of extra

memory allocation.

3) Java static block

o Is used to initialize the static data member.

o It is executed before main method at the time of classloading.

Example of static block

1. class A2{

2. static{System.out.println("static block is invoked");}

3. public static void main(String args[]){

4. System.out.println("Hello main");

5. }

6. }

Test it Now
Output:static block is invoked

 Hello main

http://www.javatpoint.com/opr/test.jsp?filename=A2

Introduction to Object Oriented Programming

Object-oriented Programming is widely used concept in modern programming languages such as C++,Java, Perl and Python.

• Its programming style is associated with concepts of class and objects and various concepts like Inheritance, encapsulation

,Abstraction and polymorphism.

Why Object Oriented Programming?
prior to object-oriented programming (OOP), programs were written using procedural languages. Procedural languages stress functions.
The bigger problems are broken down into smaller sub-problems and written as functions.

• Procedural languages did not pay attention to data. As a result , data was almost neglected, data security was easily

compromised.

• Examples of procedural languages include Fortran, COBOL and C, which have been around since the 1960s and 70s.

Procedure oriented Programming(POP)

• Conventional programming languages such as Cobol, Fortran and c is commonly known as procedural oriented programming
languages.

Some characteristics exhibited by POP are: 1.Emphasis is on doing things
2.Large programs are divided into smaller programs known as functions.

3.Data moves around the system from function to function. Limitations of POP are:
1.Emphasis is on function rather than on data . Any function in program can access , modify data and there is no security for it
2.Code reusability is not provided.

Object oriented programming Paradigm

 OOP is developed by retaining all the best features of structured programming method/procedural method, to which they have
added many concepts which facilitates efficient programming.

• OOP treat data as critical element in the program development and does not allow it move freely around the system. It ties data more
closely to the function that operate on it and protects it from accidental modifications from outside functions.

• OOP allows decomposition of a problem into number of entities called objects and then builds data and functions around these
objects

• Data of an object can be accessed only by the functions associated with object. However functions of one object can access the
functions of other objects

• Objects may communicate with each other through functions

Difference between OOP(Object oriented programming)and POP(procedure oriented programming):

OOP POP

 Object oriented. Structure oriented.

 Program is divided into objects. Program is divided into functions.

 Bottom-up approach. Top-down approach.

 Emphasis is on data Emphasis is on function

 It uses access specifier. Data is It doesn’t use access specifier. No highly secure
 security for data

 Encapsulation is used to hide

the data. No data hiding.

 Inheritance concept in OOP

facilitates reusability of existing No facility of reusability for existing programs
 programs

 C++, Java. C, Pascal.

Basic concepts of object oriented programming:

• In Object oriented programming we write programs using classes and objects utilizing features of OOPs such as

1. Objects• Objects are the basic run-time entities in object- oriented system. An Object is an entity that has state, behaviour and
identity. There are many objects around us.
• E.g. A computer mouse, is an object. It is considered an object with state and behaviour. Its states would be its colour, size and brand
name and its behaviour would be left-click, right- click.

2. Classes• A class is an entity that helps the programmer to define a new complex data type. Objects are the variables of type class. A
class defines the data and behaviour of objects. In simple words, A class is a collection of objects of similar type.
• E.g. mango, apple and orange are members of the class fruit.

Class and Objects

 A class is like a blueprint of data member and functions

 and object is an instance of class.

3. Data Abstraction• Data Abstraction refers to the act of re- presenting essential features without including the back-ground details.
It is concerned with separating the behaviour of a data object from its re-presentation.
• E.g. Executable file of a program.

4. Encapsulation• The process of binding data members and functions in a class is known as, encapsulation. Encapsulation is the powerful
feature (concept) of object-oriented programming. With the help of this concept, data is not accessible to the outside world and only those
functions which are declared in the class, can access it.

5. Data Hiding• Data Hiding is similar to encapsulation. Basically, encapsulating data members and functions in a class promotes data hiding. This
concept will help us to provid the essential features to the users and hide the details. In short, encapsulating through private access modifier
(label) is known as data hiding.

6. InherIitance• Inheritance is a process by which objects of new class acquire the propertie of objects of existing (base) class. It is in hierarchical
order. The concept of inheritance provides the idea of reusability. This means that we can add additional features to an existing class without
modifying it.

7. Polymorphism• Polymorphism is an important object-oriented programming concept. This is a greek term, means the ability to take
more than one form. The process of Using a single function name to perform different types of tasks is known as function-overloading.

8. Binding• Binding refers to the linking of a procedure call to the code (its body) to be executed in response to the call.

9. Message Passing: objects communicate with one-another by sending and receiving information much the same way as people
send messages to one- another.

Introduction to C+

 C++ language is a direct descendant of C programming language with additional features such as object oriented programming,
exception handling etc.

 C++ is developed by Bjarne Stroustrup starting in 1979 at Bell Labs. C++ runs on a variety of platforms, such as Windows,
Mac OS, and the various versions of UNIX.

 C++ is general purpose , high level ,compiler based object oriented programming language

Some of the features are as follows:

• Simple: It is a simple language in the sense that programs can be broken down into logical units and parts, has a rich library support and
a variety of data-types.
• Machine Independent but Platform Dependent: A C++ executable is not platform-independent (compiled programs on Linux won’t run on
Windows), however they are machine independent.
• Mid-level language: It is a mid-level language as we can do both systems-programming (drivers, kernels, networking etc.) and build large-
scale user applications (Media Players, Photoshop, Game Engines etc.)
• Rich library support:

• Speed of execution: C++ programs excel in execution speed. Since, it is a compiled language, and also hugely procedural..

• Pointer and direct Memory-Access: C++ provides pointer support which aids users to directly manipulate storage address.

• Object-Oriented: Object-Oriented support helps C++ to make maintainable and extensible programs. i.e. Large-scale applications
can be built. Procedural code becomes difficult to maintain as code-size grows.
• Compiled Language: C++ is a compiled language, contributing to its speed.

Applications of C++:

C++ finds varied usage in applications such as:

• Operating Systems & Systems Programming.

e.g. Linux-based OS (Ubuntu etc.)

• Graphics & Game engines (Photoshop, Blender,
Unreal-Engine)

• Database Engines (MySQL, MongoDB, Redis etc.)

First C++ Program

/*Multiple line comment

*/
#include<iostream>

using namespace std;

//This is where the execution of program begins int
main()

{

// displays Hello World! on screen
cout<<"Hello World!";
return 0;

}

Output:

Hello World!

Input and Output operators:

Output Operator:

The cout is a predefined object of ostream class in iostream header file. It is connected with the standard output device,
which is usually a display screen. This object can also display the value of variables on screen.The cout is used in
conjunction with stream insertion operator (<<) to display the output on a console

Input Operator:

The cin is a predefined object of istream class. It is connected with the standard input device, which is usually a
keyboard. The cin is used in conjunction with stream extraction operator (>>) to read the input from a console.

#include <iostream>
using namespace std;
int main() {

int age;

cout << "Enter your age: "; cin >> age;
cout << "Your age is: " << age << endl;

}

Output:Enter your age: 22 Your age is: 22

The endl is a predefined object of ostream class. It is used to insert a new line characters

 #include <iostream>

using namespace std;

int main()

{

cout << "C++ Tutorial";

cout << " Javatpoint"<<endl;
cout << "End of line"<<endl;
}

Output:

C++ Tutorial Javatpoint
End of line

<iostream> It is used to define the cout, cin and cerr objects, which
correspond to standard output stream, standard input stream
and standard error stream, respectively.

Namespace

• Namespace defines scope for the identifiers that are used in a program. For using the identifiers defined in namespace
scope we must include the following directive , like using namespace std;

• Here , std is the namespace where ANSIC++ standard class libraries are defined. This will bring all the identifiers
defined in std to the current global scope.

• using and namespaces are the keywords of c++

C++ Programming Fundamentals

C++ Identifiers

• A C++ identifier is a name used to identify a variable, function, class, module, or any other user-defined item. An identifier starts
with a letter A to Z or a to z or an underscore (_) followed by zero or more letters, underscores, and digits (0 to 9).

• Here are some examples of acceptable identifiers

Mohd abc move_name a_123 myname5 _temp j a23b9 retVal

C++ Keywords

The following list shows the reserved words in C++. These reserved words may not be used as constant or variable or any other
identifier names.

asm else new this

auto enum operator throw

bool explicit private true

break export protected try

case extern public typedef

catch false register typeid

char float reinterpret_cast typename

class for return union

const friend short unsigned

const_cast goto signed using

continue if sizeof virtual

default inline static void

delete int static_cast volatile

do long struct wchar_t

double mutable switch while

dynamic_cast namespace template

//program demonstrating data types

#include <iostream>
#include <string>

using namespace std;
int main ()
{

int myNum = 5; // Integer (whole number) float
myFloatNum = 5.99; // Floating point number double
myDoubleNum = 9.98; // Floating point number
char myLetter = 'D'; // Character bool
myBoolean = true; // Boolean string
myString = "Hello"; // String

// Print variable values

cout << "int: " << myNum << "\n";

cout << "float: " << myFloatNum << "\n";

cout << "double: " << myDoubleNum << "\n";
cout << "char: " << myLetter << "\n";

cout << "bool: " << myBoolean << "\n";
cout << "string: " << myString << "\n";
return 0;

}

Output:

int: 5 float:
5.99
double:
9.98 char:
D bool: 1
string:
Hello

Operators in c++

An operator is simply a symbol that is used to perform operations. There are
following types of operators to perform different types of

 All C operators are valid in c++ also.In addition, c++ introduces some newoperators such as insertion
operator<< and extraction operator>>

Other new operators are:

1) • :: scope resolution operator

2) • ->* pointer to member declarator

3) • ::* pointer to member declarator

4) .* pointer to member declartor

5) • delete memory release operator

6) • endl line feed operator

7) • new Memory allocation operator

8) • setw Field width operator

scope resolution operator is ::. It is used for following purposes.

1.To access a global variable when there is a local variable with same name:

#include<iostream>

using namespace std;
int x; // Global x

int main()

{

int x = 10; // Local x

cout << "Value of global x is " << ::x;

cout << "\nValue of local x is " << x; return
0;

}

Output:Value of global x is 0
Value of local x is 10

2) For namespace we can use the namespace name with the scope resolution operator to refer that class
without any conflicts

// Use of scope resolution operator for namespace.
#include<iostream>
int main()

{

std::cout << "Hello" << std::endl;

}

Here cout and endl belong to std namespace

3) To define a function outside a class.

Type Definition typedef keyword is used to assign a new name to any existing
data-type.

Following is the syntax of typedef

typedef current_name new_name;

#include <iostream>
using namespace std;
int main()
{

typedef int marks;
marks i = 5, j = 8;
cout << "i = " << i <<endl;
cout << "j = " << j <<endl;
return 0;

}

Enumerated Data type

• enum in C++ is a data type that contains fixed set of constants.

#include <iostream>

using namespace std;

enum week { Monday, Tuesday, Wednesday, Thursday, Friday,Saturday, Sunday };

int main()

{

week day; day = Friday;

cout << "Day: " << day+1<<endl;

return 0;

}

Output:

Day:5

C++ Explicit Conversion

When the user manually changes data from one type to another, this is known as explicit conversion. This type of
conversion is also known as type casting.

#include <iostream>
using namespace std;
int main() {

double num_double = 3.56;

cout << "num_double = " << num_double << endl;

int num_int1 = (int)num_double;
 cout << "num_int1 = " << num_int1 << endl;

 return 0;

 }

Output:

num_double=3.56 num_int1=3

Introduction to C++ Classes and Objects

 The classes are the most important feature of C++ that leads to Object Oriented programming.

 Class is a user defined data type, which holds its own data members and member functions, which can be accessed
and used by creating instance (objects) of that class.

The general form of class definition:

class classname

{

private:

variable declaration;
function declaration;
public:
variable declaration;
function declaration;
};

 In C++ a class is defined by using the keyword class followed by the class name.

 The variables inside class definition are called as data members and the functions are called member functions.

 The body of class contains the declaration of variables and functions which are collectively called class members.

For example:

class student

{

private:

int roll_number;
public:
char name[10];
void fun1() ;

};

 As seen in above example roll_number and name are data members and fun1() is the member function of class name
student.

 The keywords private and public are followed by a colon. The members that have been declared as private can be
accessed only within the class . on the other hand, public members can be accessed from outside the class also. The
data hiding(using private declaration) is the key feature of object oriented programming.

 The use of keyword private is optional because by default , the members of a class are private

Creating Objects

Object is an instance of a class. All the members of the class can be accessed through object.

Syntax to Define Object in C++

className objectVariableName;

Example : student s1; //creating an object of Student

 In this example, Student is the type and s1 is the reference variable that refers to the instance of Student class.

 When class is defined, only the specification for the object is defined; no memory or storage is allocated.

 You can access the data members and member functions by using a . (dot) operator. For example,

 s1.roll_number=10;

//C++ program to demonstrate the use of object and class

#include<iostream>
using namespace std;
class MyClass { // The class

public: // Access specifier
int Num1; // data member

float Num2 ; //data member

};

int main() {

MyClass myObj; // Create an object of MyClass

// Access attributes and set values
myObj.Num1 = 15;

myObj.Num2 = 28;

// Print attribute values

cout << myObj.Num1<<endl;
cout << myObj.Num2; return 0;

}

Accessing class members

The private data of a class can be accessed only through member functions of that class.
Format of calling member function:
Objectname.functionname(actual arguments);

Example:

s1.fun(10,”sam”);

Member function can be invoked only using object fun(10,”sam”); is invalid

Similarly s1.roll_number=10; is invalid

• Although s1 is an object of type student to which number belongs, the number(declared private) can be accessed only
through a member function and not by the object directly.

• A variable declared as public can be accessed by the objects directly
A variable declared as public can be accessed by the objects directly.

#include<iostream>

using namespace std;
class xyz
{

int x;
public: int
z;

};

int main()

{

xyz ob;

//ob.x=0;//error x is private
ob.z=10;//z is public
//cout<<ob.x<<endl; //error
cout<<ob.z;
return 0;

}

Defining Member functions

Member functions can be defined in two places:

 Outside the class definition

 Inside the class definition

Outside the class definition

Member functions that are declared inside a class have to be defined separately outside the class.

General form of a member function definition

returntype classname::function(argumentlist)

{

Function body

}

class name:: tells the compiler that function functionname belongs to class classname.That is , scope of the function is
restricted to the class name specified

#include<iostream>
using namespace std;
class person
{

char
name[30];
int age;
public:

};

void getdata(void);
void display(void);

void person::getdata(void)

{

cout<<"Enter
name:"; cin>>name;
cout<<"Enter age:";

cin>>age;

}

void person::display(void)

{

}

int main()

{

person p;

}

cout<<"\n name:"<<name;
cout<<"\n Age:"<<age;

p.getdata();

p.display();
return 0;

Output:

Enter name: john
Age:17

Name: john
Age:17

Inside the class definition

• Another method of defining a member function is to replace the function declaration by the actual function definition inside

the class.

#include<iostream>

using namespace std;
class person
{

char
name[30];
int age;
public:

void getdata(void)

{

cout<<"Enter
name:"; cin>>name;
cout<<"Enter age:";
cin>>age;

} void
display(void)

{

cout<<"\n name:"<<name;
cout<<"\n Age:"<<age;

}
};

int main()

{

person p

p.getdata();

p.display();
return 0;
}

Basic structure of c++ program

1. Documentation Section

2. Preprocessor Directives or Compiler Directives Section (i) Link Section

(ii) Definition Section

3. Global Declaration Section

4. Class declaration or definition

5. Main C++ program function called main () 6. Beginning of the
program: Left brace {
(i) Object declaration part;

(ii) Accessing member functions (using dot operator); 7. End of the main
program: Right brace}

/* C++ program to create a simple class and object. defining member function inside the class*/

#include <iostream> using
namespace std;

class Hello {

public:
void sayHello()
{

};

int main() {

Hello h;

cout << "Hello World" << endl;
}

h.sayHello();
return 0; }

output:Hello World

Characteristics of member functions

• A member function can call another member function directly, without using the dot operator.

• Member functions can access the private data of the class. A non-member functions can’t do so(except friend function)

Types of variables:

There are three types of variables based on the scope of variables in C++

• Local Variables

• Instance Variables

• Static Variables

A variable provides us with named storage that our programs can manipulate.

Instance variables − Instance variables are declared in a class, but outside a method. When space is allocated for an object in
the heap, a slot for each instance variable value is created.

Local variables − Local variables are declared in methods, constructors, or blocks. Local variables are created

when the method, constructor or block is entered and the variable will be destroyed once it exits the
method, constructor, or block.

Access Specifiers in C++

Access specifiers in C++ define how the members of the class can be accessed. C++ has 3 new keywords introduced, namely.

• public

• private

• protected

public

Data members or Member functions which are declared as public can be accessed anywhere in the program
(within the same class, or outside of the class).

protected

Data members or Member functions which are declared as protected can be accessed in the derived class or within the same
class. private

Data members of Member functions which are declared as private can be accessed within the same class only i.e. the private
Data members or Member functions can be accessed within the public member functions of the same class.

/* program demonstrating on data hiding*/

#include<iostream> using
namespace std; class dates

{

private:

int date,month;
public:

int year;

};

int main()

{

dates date1;

cout<<"program starts"<<endl;
date1.year=2020;

cout<<"now we are in the year"<<date1.year<<"AD"<<endl;

date1.date=10;//error date is not accessible
cout<<date1.date;//error return 0;

}

Output: program starts

Now we are in the year 2020 AD

Inheritance

• Inheritance is the process by which the objects of one class can acquire the properties of
another class.

• The concept of inheritance provides the idea of code reusability
• This means that we can add additional features to a existing classes without modifying it
• This is possible by deriving new class from existing class
• The existing class is known as the base class(or super class or parent class) and the new class is

called as a (derived class or sub class or child class).
• The derived class inherits some or all features of the base class
• Sub Class: The class that inherits properties from another class is called Sub class or Derived

Class.
Super Class:The class whose properties are inherited by sub class is called Base Class or Super class.

• The main advantage of the inheritance are:
 Resuability of code
 To increase the reliability of the code
 To add some enhancement of base class

Example:

Types Of Inheritance

C++ supports five types of inheritance:

• Single inheritance

• Multiple inheritance

• Hierarchical inheritance

• Multilevel inheritance

• Hybrid inheritance

Single Inheritance in C++

In this type of inheritance one derived class inherits from only one base class. It is the most simplest form of
Inheritance.

Multiple Inheritance in C++

In this type of inheritance a single derived class may inherit from two or more than two base classes.

Hierarchical Inheritance in C++

In this type of inheritance, multiple derived classes inherits from a single base class.

Multilevel Inheritance in C++

In this type of inheritance the derived class inherits from a class, which in turn inherits from some other
class. The Super class for one, is sub class for the other.

Hybrid (Virtual) Inheritance in C++

Hybrid Inheritance is combination of Hierarchical and Mutilevel Inheritance.

Defining Derived Class

• A derived class is defined by specifying its relationship with the base class in addition to its own details

The general form of defining a derived class is:

class derivedclassname : visibilitymode baseclassname

{

//members of derived class

}

• The colon(:) indicates that the derived class name is derived from the base class name

• The visibility mode(access specifier) specifies whether the features of the base class are privately derived or publicly
derived.The default visibility is private.

Examples:

class A

{

members of A

}

class B:private A//private derivation

{

members of B

}

class A

{

members of A

}

class B:public A//public derivation

{

members of B

}

//program demonstrating single inheritance
#include <iostream>
using namespace std;

class x
{
 private:
 int id_p;
};

class y : public x
{
 public:
 int id_c;
};

int main()
 {

 y obj1;

 obj1.id_c = 7;
 obj1.id_p = 91;
 cout << "Child id is " << obj1.id_c << endl;
 cout << "Parent id is " << obj1.id_p << endl;

 return 0;
 }

Output:
child is 7
Parent is 91

Visibility modes(Access specifiers) can be classified into three categories:

 •Public: When the member is declared as public, it is accessible to all the functions of the program.
 •Private: When the member is declared as private, it is accessible within the class only.
 •Protected: When the member is declared as protected, it is accessible within its own class as well as the class immediately

derived from it.

Modes of Inheritance

Public mode: If we derive a sub class from a public base class. Then the public member of the base class will become public in the
derived class and protected members of the base class will become protected in derived class.
Protected mode: If we derive a sub class from a Protected base class. Then both public member and protected members of the base
class will become protected in derived class.
Private mode: If we derive a sub class from a Private base class. Then both public member and protected members of the base class
will become Private in derived class.

Base class visibility
Derived class visibility

Public

Private

Protected

Private
Not
Inherited

Not
Inherited

Not
Inherited

Protected

Protected

Private

Protected

Public

Public

Private

Protected

Multiple inheritance

• In multiple inheritance, a class can inherit from more than one classes. In simple words, a class can have more than one parent
classes.

• Suppose we have to make two classes A and B as the parent classes of class C, then we have to define class C as follows.

• General form of multiple inheritance

• class C: public A, public B
{

// code

};

#include<iostream>
using namespace std;
// Base class
class MyClass {
public: void myFunction()

{

cout << "Some content in parent class." ;

}

};

// Another base class
class MyOtherClass
{

public:

void myOtherFunction()

{

cout << "Some content in another class." ;

}

};

// Derived class

class MyChildClass: public MyClass, public MyOtherClass {

};

int main()
{
MyChildClass myObj;
myObj.myFunction();
myObj.myOtherFunction();
return 0;

}

Output:

Some content in parent class.some content in another class

Multilevel Inheritance in C++

• In this type of inheritance the derived class inherits from a class, which in turn inherits from some other class.

• General form of multi level inheritance:
class A
{

};

class B:public A

{ };

class C:public B

{

};

#include <iostream> using
namespace std;

class A

{ public: void
display()

{

cout<<"Base class content.";

}};

class B : public A

{

};

class C : public B

{ };

int main()

{

C obj;

obj.display();
return 0;

}

Output:Base class content

Hierarchical Inheritance

In this type of inheritance, multiple derived classes inherits from a single base class.

Hybrid Inheritance

// hierarchial inheritance.cpp
#include <iostream>
using namespace std;
class A //single base class
{

public:

int x, y;

void getdata()

{

cout << "\nEnter value of x and y:\n"; cin >> x >> y;

}

};

class B : public A //B is derived from class base

{

public:

void product()

{

cout << "\nProduct= " << x * y;

}

};

class C : public A //C is also derived from class base

{

public:

void sum()

{

cout << "\nSum= " << x + y;

}

};

int main()

{

B obj1; //object of derived class B
C obj2; //object of derived class C
obj1.getdata();
obj1.product();
obj2.getdata();
obj2.sum();
return 0;

} //end of program

• Hybrid Inheritance is the combination of two or more inheritances : single, multiple , multilevel or hierarchical
Inheritances.

//hybrid inheritance
#include <iostream>
using namespace std;
class A
{

protected:

int a;
public:
void get_a()

{

cout << "Enter the value of 'a' : " << endl;
cin>>a;

}

};

class B : public A

{

protected:
int b;

public:

void get_b()

{

cout << "Enter the value of 'b' : " << endl;

cin>>b;
}

};

class C

{

protected:
int c;
public:
void get_c()

{

cout << "Enter the value of c is : " << endl;
cin>>c;

}

};

class D : public B, public C

{

protected:
int d;
public:
void mul()
{

get_a();

get_b();

get_c();

cout << "Multiplication of a,b,c is : " <<a*b*c<< endl;

}

};

int main()

{

D d;
d.mul();
return 0;

}

Constructors

A constructor in C++ is a special method that is automatically called when an object of a class is created.

 How constructors are different from normal member function?

1) A constructor has same name as the class itself.

2) A constructor does not have return type

3) A constructor is automatically called when an object is created Syntax:

class_name(parameter1, parameter2, ...)

{

// constructor Definition

}

//default constructor
#include<iostream>
using namespace std;
class MyClass
{
public:

MyClass() {

cout << "Hello World!";

}

};

int main() {

MyClass myObj; // Create an object ofMyClass (this will call the constructor) return 0;
}

Output:Hello World!

//parameterized constructors
#include <iostream>
using namespace std;

class Calc

{

public:

//int val;

public:
Calc(int x)
{

cout << x;

}
};

int main()

{

Calc c1(10);

}

Output: 10

Types of Constructor in C++

There are two types of constructor in C++.

1) Default constructor 2) Parameterized constructor

1) Default Constructor

A default constructor doesn’t have any arguments (or parameters)

2) Parameterized Constructor

Constructors with parameters are known as Parameterized constructors.
These type of constructor allows us to pass arguments while object creation.

What is Destructor?

• Destructor is a member function which destructs or deletes an object.

• Destructors doesn’t take any arguments and don’t return anything • Destructors have same name as the
class preceded by a tilde(~) Syntax:

~class_name()

{

//Some code

}

#include <iostream>
using namespace std;
class Calc {
public:

int val;

public:

Calc()

{

val = 20;
cout << val;
}

~Calc()

{

cout <<"destructor is called";

}

};

int main()

{

Calc c1;

}

Output:

20

destructor is called

Function Overloading in C++

 In a class definition we can have two or more functions having the same name. This is called function overloading.

 To resolve ambiguity, the number of parameters and/or datatypes in the parameter list of each function must be different. The
number of parameters and their data types is called the signature of a function.

 so even if the names of the functions are same,by their signatures the functions are uniquely identified.

 Function overloading is usually used to enhance the readability of the program. If you have to perform one single operation but
with different number or types of arguments, then you can simply overload the function.

//function overloading

#include<iostream>
#define pi 3.14
using namespace std;
class figure
{

public:

void area(int x,int y)

{

cout<<"area of rectangle is:"<<x*y<<endl;

}

void area(float r)

{

cout<<"area of circle is:"<<pi*r*r<<endl;

}

void area(double x,double y)

{

cout<<"area of traingle is:"<<(x*y)/2<<endl;

}

};

int main()

{

figure geo;
geo.area(7.0);
geo.area(2,3);

geo.area(8.3,4.5);
return 0;

}

Polymorphism

• The word polymorphism means having many forms.Polymorphism is a feature of OOPs that allows the object to behave
differently in different conditions. In C++ we have two types of polymorphism:

1) Compile time Polymorphism – This is also known as static (or early) binding.

2) Runtime Polymorphism – This is also known as dynamic (or late) binding.

https://beginnersbook.com/2017/08/cpp-oops-concepts/

1) Compile time Polymorphism

Function overloading and Operator overloading are perfect example of Compile time polymorphism.
Compile time Polymorphism Example

In this example, we have two functions with same name but different number of arguments. Based on how many parameters we
pass during function call determines which function is to be called, this is why it is considered as an example of polymorphism
because in different conditions the output is different. Since, the call is determined during compile time thats why it is called
compile time polymorphism.

2) Runtime Polymorphism

Function overriding is an example of Runtime polymorphism.

Function Overriding: When child class declares a method, which is already present in the parent class then this is called
function overriding, here child class overrides the parent class.

C++ Operators Overloading

Operator overloading is a compile-time polymorphism in which the operator is overloaded to provide the special meaning to the
user-defined data type.

• It helps the programmer to use operators with objects of classes. The outcome of operator overloading is that objects can be
used in a natural manner as the variables of basic data types.

Defining operator overloading

Class to which operator is applied is called operator function. operator functions must be either member function.
Syntax:

 The process of overloading involves the following steps:

• 1.create a class that defines the data types that is used in overloading operation.

• 2.Declare the operator function operator op() in the public part of class.

• 3.Define the operator function to implement the required operations.

Operator that cannot be overloaded are as follows:
Scope operator (::) Sizeof member selector(.) member
pointer selector(*) ternary operator(?:)

//overloading unary operators
#include<iostream>
using namespace std;
class space
{
int x;
int y;
int z;
public:

void getdata(int a,int b,int c);
void display();
void operator-();

};
void space::getdata(int a,int b,int c)
{
x=a;
y=b;
z=c;
}
void space::display()
{
cout<<x<<" ";
cout<<y<<" ";
cout<<z<<" ";
}
void space::operator-()

{
x=-x;
y=-y;
z=-z;
}
int main()
{
space s;
s.getdata(10,-20,30);
cout<<"s:";
s.display();
-s;//activate operator -() function
cout<<"s:";
s.display();
return 0;
}
Output:
S:10 -20 30
S:-10 20 30
Explanation:
The function operator –() takes no argument.the unary minus operator when applied to an object changes the sign of data members of
the objects.

Data Abstraction in C++

• Data Abstraction is a process of providing only the essential details to the outside world and hiding the internal details, i.e.,
representing only the essential details in the program.

Data Abstraction can be achieved in two ways:

Abstraction using classes • Abstraction in header files.

Abstraction using classes: An abstraction can be achieved using classes. A class is used to group all the data members and
member functions into a single unit by using the access specifiers. A class has the responsibility to determine which data
member is to be visible outside and which is not.

Abstraction in header files: An another type of abstraction is header file. For example, pow() function available is used to
calculate the power of a number without actually knowing which algorithm function uses to calculate the power. Thus, we can
say that header files hides all the implementation details from the user.

Access Specifiers Implement Abstraction:

Public specifier: When the members are declared as public, members can be accessed anywhere from the program.

Private specifier: When the members are declared as private, members can only be accessed only by the member functions of
the class.

Let's see a simple example of abstraction in header files.

Abstract Class and Pure Virtual Function in C++

In C++, we use terms abstract class and interface interchangeably. A class with pure virtual function is known as abstract class.
For example the following function is a pure virtual function:

 virtual void fun() = 0;

A pure virtual function is marked with a virtual keyword and has = 0 after its signature. You can call this function an abstract
function as it has no body. The derived class must give the implementation to all the pure virtual functions of parent class
else it will become abstract class by default.

https://beginnersbook.com/2017/08/c-plus-plus-tutorial-for-beginners/

//Abstract baseclass

#include<iostream>

using namespace std;

// Abstract base class

class Base

{

 public:

 virtual void show() = 0;
//Pure Virtual Function

};

void Base :: show()
//Pure Virtual definition

{

 cout << "Pure Virtual
definition\n";

}

class Derived:public Base

{

 public:

 void show()

 {

 cout <<
"Implementation of
Virtual Function in
Derived class\n";

 }

};

int main()

{

 Base *b;

 Derived d;

 b = &d;

 b->show();

}

Interfaces

An interface describes the behavior or capabilities of a C++ class without committing to a particular implementation of that
class.

The C++ interfaces are implemented using abstract classes and these abstract classes should not be confused with data
abstraction which is a concept of keeping implementation details separate from associated data.

A class is made abstract by declaring at least one of its functions as pure virtual function. A pure virtual function is specified by
placing "= 0" in its declaration

Encapsulation In C++

When all the data members and member functions are combined in a single unit called class, this process is called
Encapsulation. In other words, wrapping the data together and the functions that manipulate them.

A thread can be in one of the five states. According to sun, there is only 4 states

in thread life cycle in java new, runnable, non-runnable and terminated. There is no

running state.

But for better understanding the threads, we are explaining it in the 5 states.

The life cycle of the thread in java is controlled by JVM. The java thread states are as

follows:

1. New

2. Runnable

3. Running

4. Non-Runnable (Blocked)

5. Terminated

1) New

The thread is in new state if you create an instance of Thread class but before the

invocation of start() method.

2) Runnable

The thread is in runnable state after invocation of start() method, but the thread scheduler

has not selected it to be the running thread.

3) Running

The thread is in running state if the thread scheduler has selected it.

4) Non-Runnable (Blocked)

This is the state when the thread is still alive, but is currently not eligible to run.

5) Terminated

A thread is in terminated or dead state when its run() method exits

How to create thread

There are two ways to create a thread:

1. By extending Thread class

2. By implementing Runnable interface.

Thread class:

Thread class provide constructors and methods to create and perform operations on a

thread.Thread class extends Object class and implements Runnable interface.

Commonly used Constructors of Thread class:

o Thread()

o Thread(String name)

o Thread(Runnable r)

o Thread(Runnable r,String name)

Commonly used methods of Thread class:

1. public void run(): is used to perform action for a thread.

2. public void start(): starts the execution of the thread.JVM calls the run()

method on the thread.

3. public void sleep(long miliseconds): Causes the currently executing thread to

sleep (temporarily cease execution) for the specified number of milliseconds.

4. public void join(): waits for a thread to die.

5. public void join(long miliseconds): waits for a thread to die for the specified

miliseconds.

6. public int getPriority(): returns the priority of the thread.

7. public int setPriority(int priority): changes the priority of the thread.

8. public String getName(): returns the name of the thread.

9. public void setName(String name): changes the name of the thread.

10. public Thread currentThread(): returns the reference of currently executing

thread.

11. public int getId(): returns the id of the thread.

12. public Thread.State getState(): returns the state of the thread.

13. public boolean isAlive(): tests if the thread is alive.

14. public void yield(): causes the currently executing thread object to temporarily

pause and allow other threads to execute.

15. public void suspend(): is used to suspend the thread(depricated).

16. public void resume(): is used to resume the suspended thread(depricated).

17. public void stop(): is used to stop the thread(depricated).

18. public boolean isDaemon(): tests if the thread is a daemon thread.

19. public void setDaemon(boolean b): marks the thread as daemon or user

thread.

20. public void interrupt(): interrupts the thread.

21. public boolean isInterrupted(): tests if the thread has been interrupted.

22. public static boolean interrupted(): tests if the current thread has been

interrupted.

Runnable interface:

The Runnable interface should be implemented by any class whose instances are

intended to be executed by a thread. Runnable interface have only one method named

run().

1. public void run(): is used to perform action for a thread.

Starting a thread:

start() method of Thread class is used to start a newly created thread. It performs

following tasks:

o A new thread starts(with new callstack).

o The thread moves from New state to the Runnable state.

o When the thread gets a chance to execute, its target run() method will run.

1) Java Thread Example by extending Thread class

1. class Multi extends Thread{

2. public void run(){

3. System.out.println("thread is running...");

4. }

5. public static void main(String args[]){

6. Multi t1=new Multi();

7. t1.start();

8. }

9. }
Output:thread is running...

2) Java Thread Example by implementing Runnable interface

1. class Multi3 implements Runnable{

2. public void run(){

3. System.out.println("thread is running...");

4. }

5.

6. public static void main(String args[]){

7. Multi3 m1=new Multi3();

8. Thread t1 =new Thread(m1);

9. t1.start();

10. }

11. }
Output:thread is running...

If you are not extending the Thread class,your class object would not be treated as a

thread object.So you need to explicitely create Thread class object.We are passing the

object of your class that implements Runnable so that your class run() method may

execute.

Thread Scheduler in Java

Thread scheduler in java is the part of the JVM that decides which thread should run.

There is no guarantee that which runnable thread will be chosen to run by the thread
scheduler.

Only one thread at a time can run in a single process.

The thread scheduler mainly uses preemptive or time slicing scheduling to schedule the
threads.

Difference between preemptive scheduling and time
slicing

Under preemptive scheduling, the highest priority task executes until it enters the waiting or

dead states or a higher priority task comes into existence. Under time slicing, a task

executes for a predefined slice of time and then reenters the pool of ready tasks. The

scheduler then determines which task should execute next, based on priority and other

factors.

Sleep method in java

The sleep() method of Thread class is used to sleep a thread for the specified amount of
time.

Syntax of sleep() method in java

The Thread class provides two methods for sleeping a thread:

o public static void sleep(long miliseconds)throws InterruptedException

o public static void sleep(long miliseconds, int nanos)throws InterruptedException

Example of sleep method in java
1. class TestSleepMethod1 extends Thread{

2. public void run(){

3. for(int i=1;i<5;i++){

4. try{Thread.sleep(500);}catch(InterruptedException e){System.out.println(e);}

5. System.out.println(i);

6. }

7. }

8. public static void main(String args[]){

9. TestSleepMethod1 t1=new TestSleepMethod1();

10. TestSleepMethod1 t2=new TestSleepMethod1();

11.

12. t1.start();

13. t2.start();

14. }

15. }

Output:

 1

 1

 2

 2

 3

 3

 4

 4

As you know well that at a time only one thread is executed. If you sleep a thread for the

specified time,the thread shedular picks up another thread and so on.

The join() method

The join() method waits for a thread to die. In other words, it causes the currently running

threads to stop executing until the thread it joins with completes its task.

Syntax:

public void join()throws InterruptedException

public void join(long milliseconds)throws InterruptedException

Example of join() method

1. class TestJoinMethod1 extends Thread{

2. public void run(){

3. for(int i=1;i<=5;i++){

4. try{

5. Thread.sleep(500);

6. }catch(Exception e){System.out.println(e);}

7. System.out.println(i);

8. }

9. }

10. public static void main(String args[]){

11. TestJoinMethod1 t1=new TestJoinMethod1();

12. TestJoinMethod1 t2=new TestJoinMethod1();

13. TestJoinMethod1 t3=new TestJoinMethod1();

14. t1.start();

15. try{

16. t1.join();

17. }catch(Exception e){System.out.println(e);}

18.

19. t2.start();

20. t3.start();

21. }

22. }

Test it Now

Output:1

 2

 3

 4

 5

 1

 1

 2

 2

 3

 3

 4

http://www.javatpoint.com/opr/test.jsp?filename=TestJoinMethod1

 4

 5

 5

As you can see in the above example,when t1 completes its task then t2 and t3 starts

executing.

Example of join(long miliseconds) method

1. class TestJoinMethod2 extends Thread{

2. public void run(){

3. for(int i=1;i<=5;i++){

4. try{

5. Thread.sleep(500);

6. }catch(Exception e){System.out.println(e);}

7. System.out.println(i);

8. }

9. }

10. public static void main(String args[]){

11. TestJoinMethod2 t1=new TestJoinMethod2();

12. TestJoinMethod2 t2=new TestJoinMethod2();

13. TestJoinMethod2 t3=new TestJoinMethod2();

14. t1.start();

15. try{

16. t1.join(1500);

17. }catch(Exception e){System.out.println(e);}

18.

19. t2.start();

20. t3.start();

21. }

22. }

Test it Now

Output:1

 2

 3

 1

 4

 1

 2

 5

 2

 3

http://www.javatpoint.com/opr/test.jsp?filename=TestJoinMethod2

 3

 4

 4

 5

 5

In the above example,when t1 is completes its task for 1500 miliseconds(3 times) then

t2 and t3 starts executing.

getName(),setName(String) and getId() method:

public String getName()

public void setName(String name)

public long getId()

1. class TestJoinMethod3 extends Thread{

2. public void run(){

3. System.out.println("running...");

4. }

5. public static void main(String args[]){

6. TestJoinMethod3 t1=new TestJoinMethod3();

7. TestJoinMethod3 t2=new TestJoinMethod3();

8. System.out.println("Name of t1:"+t1.getName());

9. System.out.println("Name of t2:"+t2.getName());

10. System.out.println("id of t1:"+t1.getId());

11.

12. t1.start();

13. t2.start();

14.

15. t1.setName("Sonoo Jaiswal");

16. System.out.println("After changing name of t1:"+t1.getName());

17. }

18. }

Test it Now

Output:Name of t1:Thread-0

 Name of t2:Thread-1

 id of t1:8

 running...

http://www.javatpoint.com/opr/test.jsp?filename=TestJoinMethod3

 After changling name of t1:Sonoo Jaiswal

 running...

The currentThread() method:

The currentThread() method returns a reference to the currently executing thread object.

Syntax:

public static Thread currentThread()

Example of currentThread() method

1. class TestJoinMethod4 extends Thread{

2. public void run(){

3. System.out.println(Thread.currentThread().getName());

4. }

5. }

6. public static void main(String args[]){

7. TestJoinMethod4 t1=new TestJoinMethod4();

8. TestJoinMethod4 t2=new TestJoinMethod4();

9.

10. t1.start();

11. t2.start();

12. }

13. }

Test it Now

Output:Thread-0

 Thread-1

Naming Thread and Current Thread

Naming Thread

The Thread class provides methods to change and get the name of a thread. By default,

each thread has a name i.e. thread-0, thread-1 and so on. By we can change the name of

the thread by using setName() method. The syntax of setName() and getName() methods
are given below:

http://www.javatpoint.com/opr/test.jsp?filename=TestJoinMethod4

1. public String getName(): is used to return the name of a thread.

2. public void setName(String name): is used to change the name of a thread.

Example of naming a thread

1. class TestMultiNaming1 extends Thread{

2. public void run(){

3. System.out.println("running...");

4. }

5. public static void main(String args[]){

6. TestMultiNaming1 t1=new TestMultiNaming1();

7. TestMultiNaming1 t2=new TestMultiNaming1();

8. System.out.println("Name of t1:"+t1.getName());

9. System.out.println("Name of t2:"+t2.getName());

10.

11. t1.start();

12. t2.start();

13.

14. t1.setName("Sonoo Jaiswal");

15. System.out.println("After changing name of t1:"+t1.getName());

16. }

17. }

Test it Now

Output:Name of t1:Thread-0

 Name of t2:Thread-1

 id of t1:8

 running...

 After changeling name of t1:Sonoo Jaiswal

 running...

Current Thread

The currentThread() method returns a reference of currently executing thread.

1. public static Thread currentThread()

Example of currentThread() method

1. class TestMultiNaming2 extends Thread{

2. public void run(){

http://www.javatpoint.com/opr/test.jsp?filename=TestMultiNaming1

3. System.out.println(Thread.currentThread().getName());

4. }

5. public static void main(String args[]){

6. TestMultiNaming2 t1=new TestMultiNaming2();

7. TestMultiNaming2 t2=new TestMultiNaming2();

8.

9. t1.start();

10. t2.start();

11. }

12. }

Test it Now

Output:Thread-0

 Thread-1

Priority of a Thread (Thread Priority):

Each thread have a priority. Priorities are represented by a number between 1 and 10. In

most cases, thread schedular schedules the threads according to their priority (known as

preemptive scheduling). But it is not guaranteed because it depends on JVM specification

that which scheduling it chooses.

3 constants defined in Thread class:

1. public static int MIN_PRIORITY

2. public static int NORM_PRIORITY

3. public static int MAX_PRIORITY

Default priority of a thread is 5 (NORM_PRIORITY). The value of MIN_PRIORITY is 1 and

the value of MAX_PRIORITY is 10.

Example of priority of a Thread:

1. class TestMultiPriority1 extends Thread{

2. public void run(){

3. System.out.println("running thread name is:"+Thread.currentThread().getName());

4. System.out.println("running thread priority is:"+Thread.currentThread().getPriority());

5.

6. }

http://www.javatpoint.com/opr/test.jsp?filename=TestMultiNaming2

7. public static void main(String args[]){

8. TestMultiPriority1 m1=new TestMultiPriority1();

9. TestMultiPriority1 m2=new TestMultiPriority1();

10. m1.setPriority(Thread.MIN_PRIORITY);

11. m2.setPriority(Thread.MAX_PRIORITY);

12. m1.start();

13. m2.start();

14.

15. }

16. }

Test it Now

Output:running thread name is:Thread-0

 running thread priority is:10

 running thread name is:Thread-1

 running thread priority is:1

Multithreading in Java

Multithreading in java is a process of executing multiple threads simultaneously.

Thread is basically a lightweight sub-process, a smallest unit of processing. Multiprocessing
and multithreading, both are used to achieve multitasking.

But we use multithreading than multiprocessing because threads share a common memory

area. They don't allocate separate memory area so saves memory, and context-switching
between the threads takes less time than process.

Java Multithreading is mostly used in games, animation etc.

Advantages of Java Multithreading

1) It doesn't block the user because threads are independent and you can perform

multiple operations at same time.

2) You can perform many operations together so it saves time.

3) Threads are independent so it doesn't affect other threads if exception occur in a single
thread.

http://www.javatpoint.com/opr/test.jsp?filename=TestMultiPriority1

Multitasking

Multitasking is a process of executing multiple tasks simultaneously. We use multitasking to

utilize the CPU. Multitasking can be achieved by two ways:

o Process-based Multitasking(Multiprocessing)

o Thread-based Multitasking(Multithreading)

1) Process-based Multitasking (Multiprocessing)

o Each process have its own address in memory i.e. each process allocates separate

memory area.

o Process is heavyweight.

o Cost of communication between the process is high.

o Switching from one process to another require some time for saving and loading

registers, memory maps, updating lists etc.

2) Thread-based Multitasking (Multithreading)
o Threads share the same address space.

o Thread is lightweight.

o Cost of communication between the thread is low.

Note: At least one process is required for each thread.

What is Thread in java
A thread is a lightweight sub process, a smallest unit of processing. It is a separate path of

execution.

Threads are independent, if there occurs exception in one thread, it doesn't affect other

threads. It shares a common memory area.

As shown in the above figure, thread is executed inside the process. There is context-

switching between the threads. There can be multiple processes inside the OS and one
process can have multiple threads.

Note: At a time one thread is executed only.

Throws clause in java – Exception handling

As we know that there are two types of exception checked and unchecked.
Checked exception (compile time) force you to handle them, if you don’t
handle them then the program will not compile.
On the other hand unchecked exception (Runtime) doesn’t get checked during
compilation. Throws keyword is used for handling checked exceptions . By
using throws we can declare multiple exceptions in one go.

What is the need of having throws keyword
when you can handle exception using try-catch?

Well, thats a valid question. We already know we can handle
exceptions using try-catch block.
The throws does the same thing that try-catch does but there are some cases
where you would prefer throws over try-catch. For example:
Lets say we have a method myMethod() that has statements that can throw
either ArithmeticException or NullPointerException, in this case you can use
try-catch as shown below:

public void myMethod()
{
 try {
 // Statements that might throw an exception
 }
 catch (ArithmeticException e) {
 // Exception handling statements
 }
 catch (NullPointerException e) {
 // Exception handling statements
 }
}

But suppose you have several such methods that can cause exceptions, in
that case it would be tedious to write these try-catch for each method. The
code will become unnecessary long and will be less-readable.

One way to overcome this problem is by using throws like this: declare the
exceptions in the method signature using throws and handle the exceptions
where you are calling this method by using try-catch.
Another advantage of using this approach is that you will be forced to handle
the exception when you call this method, all the exceptions that are declared
using throws, must be handled where you are calling this method else you will
get compilation error.

https://beginnersbook.com/2013/04/java-checked-unchecked-exceptions-with-examples/
https://beginnersbook.com/2013/04/java-exception-handling/
https://beginnersbook.com/2013/04/java-exception-handling/
https://beginnersbook.com/2013/04/java-exception-handling/
https://beginnersbook.com/2013/04/try-catch-in-java/

public void myMethod() throws ArithmeticException, NullPointerException
{
 // Statements that might throw an exception
}

public static void main(String args[]) {
 try {
 myMethod();
 }
 catch (ArithmeticException e) {
 // Exception handling statements
 }
 catch (NullPointerException e) {
 // Exception handling statements
 }
}

Example of throws Keyword

In this example the method myMethod() is throwing two checked
exceptions so we have declared these exceptions in the method
signature using throws Keyword. If we do not declare these exceptions then
the program will throw a compilation error.

import java.io.*;
class ThrowExample {
 void myMethod(int num)throws IOException, ClassNotFoundException{
 if(num==1)
 throw new IOException("IOException Occurred");
 else
 throw new ClassNotFoundException("ClassNotFoundException");
 }
}

public class Example1{
 public static void main(String args[]){
 try{
 ThrowExample obj=new ThrowExample();
 obj.myMethod(1);
 }catch(Exception ex){
 System.out.println(ex);
 }
 }
}

Output:

java.io.IOException: IOException Occurred

Output:

Wrapper class Example: Primitive to Wrapper

1. public class WrapperExample1{

2. public static void main(String args[]){

3. //Converting int into Integer

4. int a=20;

5. Integer i=Integer.valueOf(a);//converting int into Integer

6. Integer j=a;//autoboxing, now compiler will write Integer.valueOf(a) internally

7.

8. System.out.println(a+" "+i+" "+j);

9. }}

Output:

20 20 20

Wrapper class Example: Wrapper to Primitive

1. public class WrapperExample2{

2. public static void main(String args[]){

3. //Converting Integer to int

4. Integer a=new Integer(3);

5. int i=a.intValue();//converting Integer to int

6. int j=a;//unboxing, now compiler will write a.intValue() internally

7.

8. System.out.println(a+" "+i+" "+j);

9. }}

Output:

3 3 3

	Why Object Oriented Programming?
	prior to object-oriented programming (OOP), programs were written using procedural languages. Procedural languages stress functions. The bigger problems are broken down into smaller sub-problems and written as functions.
	Difference between OOP(Object oriented programming)and POP(procedure oriented programming):
	Introduction to C+
	• Rich library support:
	Applications of C++:
	Output:
	Input and Output operators:
	using namespace std;
	Namespace

	C++ Programming Fundamentals
	Operators in c++
	1.To access a global variable when there is a local variable with same name:
	3) To define a function outside a class.
	typedef current_name new_name;
	Enumerated Data type
	using namespace std;
	C++ Explicit Conversion
	Introduction to C++ Classes and Objects
	The general form of class definition:
	For example:
	 The use of keyword private is optional because by default , the members of a class are private
	Accessing class members
	Defining Member functions
	Outside the class definition
	General form of a member function definition
	#include<iostream> using namespace std; class person
	{
	{ (1)
	p.display(); return 0;
	#include<iostream>
	p.display(); return 0; (1)
	Types of variables:
	Access Specifiers in C++
	public
	protected
	Defining Derived Class
	class derivedclassname : visibilitymode baseclassname
	Multiple inheritance
	• class C: public A, public B
	Hierarchical Inheritance
	Constructors
	class_name(parameter1, parameter2, ...)
	Types of Constructor in C++
	1) Default Constructor
	2) Parameterized Constructor
	~class_name()
	Function Overloading in C++
	C++ Operators Overloading
	//overloading unary operators #include<iostream>
	Data Abstraction in C++
	Data Abstraction can be achieved in two ways:
	Access Specifiers Implement Abstraction:
	Abstract Class and Pure Virtual Function in C++
	Interfaces
	Encapsulation In C++

